91 research outputs found

    Comparative Analysis on Main Material index of China and International Composite Girder Bridge with Corrugated Steel Web

    Get PDF
    Prestressed Concrete girder bridge with corrugated steel web is type of girder bridge that evolve rapidly in recent year, its excellent mechanical properties is getting more and more recognition by majority of the bridge engineers. This article investigate the case study of constructed girder bridge with corrugated steel webs in China, analyze and give comment based on their construction design, technology and etc. With the data of constructed girder bridge with corrugated steel webs in Japan, comparative analysis of the main material index of China and Japan girder bridge with corrugated steel webs was compared, the material index function was developed to ease the estimation of related construction

    Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsin cysteine proteases play multiple roles in the life cycle of parasites such as food uptake, immune invasion and pathogenesis, making them valuable targets for diagnostic assays, vaccines and drugs. The purpose of this study was to identify a cathepsin B of <it>Clonorchis sinensis </it>(<it>Cs</it>CB) and to investigate its diagnostic value for human helminthiases.</p> <p>Results</p> <p>The predicted amino acid sequence of the cathepsin B of <it>C. sinensis </it>shared 63%, 52%, 50% identity with that of <it>Schistosoma japonicum</it>, <it>Homo sapiens </it>and <it>Fasciola hepatica</it>, respectively. Sequence encoding proenzyme of <it>Cs</it>CB was overexpressed in <it>Escherichia coli</it>. Reverse transcription PCR experiments revealed that <it>Cs</it>CB transcribed in both adult worm and metacercaria of <it>C. sinensis</it>. <it>Cs</it>CB was identified as a <it>C. sinensis </it>excretory/secretory product by immunoblot assay, which was consistent with immunohistochemical localization showing that <it>Cs</it>CB was especially expressed in the intestine of <it>C. sinensis </it>adults. Both ELISA and western blotting analysis showed recombinant <it>Cs</it>CB could react with human sera from clonorchiasis and other helminthiases.</p> <p>Conclusions</p> <p>Our findings revealed that secreted CsCB may play an important role in the biology of C. sinensis and could be a diagnostic candidate for helminthiases.</p

    PtdIns (3,4,5) P3 Recruitment of Myo10 Is Essential for Axon Development

    Get PDF
    Myosin X (Myo10) with pleckstrin homology (PH) domains is a motor protein acting in filopodium initiation and extension. However, its potential role has not been fully understood, especially in neuronal development. In the present study the preferential accumulation of Myo10 in axon tips has been revealed in primary culture of hippocampal neurons with the aid of immunofluorescence from anti-Myo10 antibody in combination with anti-Tuj1 antibody as specific marker. Knocking down Myo10 gene transcription impaired outgrowth of axon with loss of Tau-1-positive phenotype. Interestingly, inhibition of actin polymerization by cytochalasin D rescued the defect of axon outgrowth. Furthermore, ectopic expression of Myo10 with enhanced green fluorescence protein (EGFP) labeled Myo10 mutants induced multiple axon-like neurites in a motor-independent way. Mechanism studies demonstrated that the recruitment of Myo10 through its PH domain to phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) was essential for axon formation. In addition, in vivo studies confirmed that Myo10 was required for neuronal morphological transition during radial neuronal migration in the developmental neocortex

    Prompt-to-afterglow transition of optical emission in a long gamma-ray burst consistent with a fireball

    Full text link
    Long gamma-ray bursts (GRBs), which signify the end-life collapsing of very massive stars, are produced by extremely relativistic jets colliding into circumstellar medium. Huge energy is released both in the first few seconds, namely the internal dissipation phase that powers prompt emissions, and in the subsequent self-similar jet-deceleration phase that produces afterglows observed in broad-band electromagnetic spectrum. However, prompt optical emissions of GRBs have been rarely detected, seriously limiting our understanding of the transition between the two phases. Here we report detection of prompt optical emissions from a gamma-ray burst (i.e. GRB 201223A) using a dedicated telescope array with a high temporal resolution and a wide time coverage. The early phase coincident with prompt {\gamma}-ray emissions show a luminosity in great excess with respect to the extrapolation of {\gamma}-rays, while the later luminosity bump is consistent with onset of the afterglow. The clearly detected transition allows us to differentiate physical processes contributing to early optical emissions and to diagnose the composition of the jetComment: Authors' version of article published in Nature Astronomy, see their website for official versio

    Molecularly imprinted polymer based on MWCNTs-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    Get PDF
    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stem-Volmer equation. The K-SV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 x 10(-7)-35.0 x 10(-7) M with a detection limit of 80 nM

    Identification and Characterization of Paramyosin from Cyst Wall of Metacercariae Implicated Protective Efficacy against Clonorchis sinensis Infection

    Get PDF
    Human clonorchiasis has been increasingly prevalent in recent years and results in a threat to the public health in epidemic regions, motivating current strategies of vaccines to combat Clonorchis sinensis (C. sinensis). In this study, we identified C. sinensis paramyosin (CsPmy) from the cyst wall proteins of metacercariae by proteomic approaches and characterized the expressed recombinant pET-26b-CsPmy protein (101 kDa). Bioinformatics analysis indicated that full-length sequences of paramyosin are conserved in helminthes and numerous B-cell/T-cell epitopes were predicted in amino acid sequence of CsPmy. Western blot analysis showed that CsPmy was expressed at four life stages of C. sinensis, both cyst wall proteins and soluble tegumental components could be probed by anti-CsPmy serum. Moreover, immunolocalization results revealed that CsPmy was specifically localized at cyst wall and excretory bladder of metacercaria, as well as the tegument, oral sucker and vitellarium of adult worm. Both immunoblot and immunolocalization results demonstrated that CsPmy was highly expressed at the stage of adult worm, metacercariae and cercaria, which could be supported by real-time PCR analysis. Both recombinant protein and nucleic acid of CsPmy showed strong immunogenicity in rats and induced combined Th1/Th2 immune responses, which were reflected by continuous high level of antibody titers and increased level of IgG1/IgG2a subtypes in serum. In vaccine trials, comparing with control groups, both CsPmy protein and DNA vaccine exhibited protective effect with significant worm reduction rate of 54.3% (p<0.05) and 36.1% (p<0.05), respectively. In consistence with immune responses in sera, elevated level of cytokines IFN-γ and IL-4 in splenocytes suggested that CsPmy could induce combined cellular immunity and humoral immunity in host. Taken together, CsPmy could be a promising vaccine candidate in the prevention of C. sinensis regarding its high immunogenicity and surface localization

    Krill Oil Inhibits NLRP3 Inflammasome Activation in the Prevention of the Pathological Injuries of Diabetic Cardiomyopathy

    No full text
    Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM), resulting in high mortality. Myocardial fibrosis, cardiomyocyte apoptosis and inflammatory cell infiltration are hallmarks of DCM, leading to cardiac dysfunction. To date, few effective approaches have been developed for the intervention of DCM. In the present study, we investigate the effect of krill oil (KO) on the prevention of DCM using a mouse model of DM induced by streptozotocin and a high-fat diet. The diabetic mice developed pathological features, including cardiac fibrosis, apoptosis and inflammatory cell infiltration, the effects of which were remarkably prevented by KO. Mechanistically, KO reversed the DM-induced cardiac expression of profibrotic and proinflammatory genes and attenuated DM-enhanced cardiac oxidative stress. Notably, KO exhibited a potent inhibitory effect on NLR family pyrin domain containing 3 (NLRP3) inflammasome that plays an important role in DCM. Further investigation showed that KO significantly upregulated the expression of Sirtuin 3 (SIRT3) and peroxisome proliferator-activated receptor-&gamma; coactivator 1&alpha; (PGC-1&alpha;), which are negative regulators of NLRP3. The present study reports for the first time the preventive effect of KO on the pathological injuries of DCM, providing SIRT3, PGC-1&alpha; and NLRP3 as molecular targets of KO. This work suggests that KO supplementation may be a viable approach in clinical prevention of DCM

    Gene Cloning and Expression of the Pyrroline-5-carboxylate Reductase Gene of Perennial Ryegrass (Lolium perenne)

    Get PDF
    Salt and drought limit the range of applications of perennial ryegrass (Lolium perenne L.), which is one of the important turf and forage grasses. Previous studies have suggested that pyrroline-5-carboxylate reductase (P5CR) might play a central role in proline accumulation in plants that are responsive to stresses. In the present study, the Lolium perenne L. pyrroline-5-carboxylate reductase (LpP5CR) gene was cloned from leaves of the cultivar ‘Derby’ using the RACE technique. The full-length LpP5CR gene was 1 047 bp in length, which comprised an open reading frame (ORF) of 840 bp in size. Sequence alignment revealed that the putative LpP5CR had a 94.3% similarity to TaP5CR. qRT-PCR displayed that the mRNA levels of the LpP5CR gene were almost the same as that in the roots, stems, and leaves of perennial ryegrass seedlings subjected to normal condition or NaCl treatment for 1 h. Moreover, the transcription level of LpP5CR was up- or down-regulated with NaCl, polyethylene glycol (PEG), cold, or abscisic acid (ABA) treatment for 3 to 48 h. In addition, confocal microscopy localized the GFP-LpP5CR fusion protein to the cytoplasm of onion epidermal cells. These findings suggest that LpP5CR encodes a cytoplasmic P5CR protein that plays an important role in the response of perennial ryegrass to various stresses
    corecore